Exact analysis of summary statistics for continuous-time discrete-state Markov processes on networks using graph-automorphism lumping
نویسندگان
چکیده
منابع مشابه
Exact epidemic models on graphs using graph-automorphism driven lumping.
The dynamics of disease transmission strongly depends on the properties of the population contact network. Pair-approximation models and individual-based network simulation have been used extensively to model contact networks with non-trivial properties. In this paper, using a continuous time Markov chain, we start from the exact formulation of a simple epidemic model on an arbitrary contact ne...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMarkov chain Monte Carlo for continuous-time discrete-state systems
A variety of phenomena are best described using dynamical models which operate on a discrete state space and in continuous time. Examples include Markov (and semiMarkov) jump processes, continuous-time Bayesian networks, renewal processes and other point processes. These continuous-time, discrete-state models are ideal building blocks for Bayesian models in fields such as systems biology, genet...
متن کاملDiscrete Time Markov Processes
What follows is a quick survey of the main ingredients in the theory of discrete-time Markov processes. It is a birds' view, rather than the deenitive \state of the art." To maximize accessibility, the nomenclature of mathematical probability is avoided, although rigor is not sacriiced. To compensate, examples (and counterexamples) abound and the bibliography is annotated. Relevance to control ...
متن کاملContinuous Time Markov Processes on Graphs
We study continuous time Markov processes on graphs. The notion of frequency is introduced, which serves well as a scaling factor between any Markov time of a continuous time Markov process and that of its jump chain. As an application, we study “multi-person simple random walks” on a graph G with n vertices. There are n persons distributed randomly at the vertices of G. In each step of this di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Network Science
سال: 2019
ISSN: 2364-8228
DOI: 10.1007/s41109-019-0206-4